1,455 research outputs found

    Optical grooming in OFDM-based elastic optical networks

    Get PDF

    Hearing impairment in Stickler syndrome: a systematic review

    Get PDF
    BACKGROUND: Stickler syndrome is a connective tissue disorder characterized by ocular, skeletal, orofacial and auditory defects. It is caused by mutations in different collagen genes, namely COL2A1, COL11A1 and COL11A2 (autosomal dominant inheritance), and COL9A1 and COL9A2 (autosomal recessive inheritance). The auditory phenotype in Stickler syndrome is inconsistently reported. Therefore we performed a systematic review of the literature to give an up-to-date overview of hearing loss in Stickler syndrome, and correlated it with the genotype. METHODS: English-language literature was reviewed through searches of PubMed and Web of Science, in order to find relevant articles describing auditory features in Stickler patients, along with genotype. Prevalences of hearing loss are calculated and correlated with the different affected genes and type of mutation. RESULTS: 313 patients (102 families) individually described in 46 articles were included. Hearing loss was found in 62.9%, mostly mild to moderate when reported. Hearing impairment was predominantly sensorineural (67.8%). Conductive (14.1%) and mixed (18.1%) hearing loss was primarily found in young patients or patients with a palatal defect. Overall, mutations in COL11A1 (82.5%) and COL11A2 (94.1%) seem to be more frequently associated with hearing impairment than mutations in COL2A1 (52.2%). CONCLUSIONS: Hearing impairment in patients with Stickler syndrome is common. Sensorineural hearing loss predominates, but also conductive hearing loss, especially in children and patients with a palatal defect, may occur. The distinct disease-causing collagen genes are associated with a different prevalence of hearing impairment, but still large phenotypic variation exists. Regular auditory follow-up is strongly advised, particularly because many Stickler patients are visually impaired

    Exploiting relocation to reduce network dimensions of resilient optical grids

    Get PDF
    Optical grids are widely deployed to solve complex problems we are facing today. An important aspect of the supporting network is resiliency i.e. the ability to overcome network failures. In contrast to classical network protection schemes, we will not necessarily provide a back-up path between the source and the original destination. Instead, we will try to relocate the job to another server location if this means that we can provide a backup path which comprises less wavelengths than the one the traditional scheme would suggest. This relocation can be backed up by the grid specific anycast principle: a user generally does not care where his job is executed and is only interested in its results. We present ILP formulations for both resilience schemes and we evaluate them in a case study on an European network topology

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed
    corecore